A Property of Regular Measures in Locally Compact Hausdorff Spaces
نویسندگان
چکیده
منابع مشابه
Computable Riesz Representation for Locally Compact Hausdorff Spaces
By the Riesz Representation Theorem for locally compact Hausdorff spaces, for every positive linear functional I on K(X) there is a measure μ such that I(f) = R f dμ, where K(X) is the set of continuous real functions with compact support on the locally compact Hausdorff space X. In this article we prove a uniformly computable version of this theorem for computably locally compact computable Ha...
متن کاملOn Modal Logics Arising from Scattered Locally Compact Hausdorff Spaces
For a topological space X, let L(X) be the modal logic of X where is interpreted as interior (and hence ♦ as closure) in X. It was shown in [6] that the modal logics S4, S4.1, S4.2, S4.1.2, S4.Grz, S4.Grzn (n ≥ 1), and their intersections arise as L(X) for some Stone space X. We give an example of a scattered Stone space whose logic is not such an intersection. This gives an affirmative answer ...
متن کاملModal compact Hausdorff spaces
We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries d...
متن کاملLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
متن کاملOne-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1961
ISSN: 0002-9939
DOI: 10.2307/2034257